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ABSTRACT

Stellar metallicity is a critical factor to characterize the stellar coronae because it directly affects the

radiative energy loss from the atmosphere. By extending theoretical relations for solar coronal loops

introduced by Rosner et al. (1978), we analytically derive scaling relations for stellar coronal loops with

various metallicities. In order to validate the derived relations, we also perform magnetohydrodyamic

simulations for the heating of coronal loops with different metallicities by changing radiative loss

functions according to the adopted elemental abundances. The simulation results nicely explain the

generalized analytical scaling relations and show a strong dependence of the thermodynamical and

radiative properties of the loops on metallicity. Higher density and temperature are obtained in lower-

metallicity coronae because of the inefficient radiative cooling, provided that the surface condition is

unchanged. Thus, it is estimated that the X-ray radiation from metal-poor coronae is higher because of

their denser coronal gas. The generalized scaling laws can also be used as a tool to study the condition

of high-energy radiation around magnetically active stars and their impact on planetary environments.

1. INTRODUCTION

The late-type stars with a surface convective envelope

possess a coronal atmosphere with typically more than

one-million Kelvin. High-energy radiations from stellar

coronae are considered to significantly affect the forma-

tion and evolution of planetary systems. In particular,

the X-ray and ultraviolet (XUV) radiations from stel-

lar coronae are believed to be one of the main players

in dispersal of protoplanetary disks (Gorti & Hollen-

bach 2009; Owen & Jackson 2012; Nakatani et al. 2018;

Komaki et al. 2021) and the evaporation of planetary

atmospheres (Lammer et al. 2003; Sanz-Forcada et al.

2011; Bolmont et al. 2017; Mitani et al. 2020; Rogers

et al. 2023). The XUV radiation from low-mass Pop-

ulation II/III stars could also affect the structure for-

mation in the epoch of cosmic reionization (Washinoue

& Suzuki 2021). Therefore, it is essential to understand

the coronal properties under various stellar environment

for addressing these unresolved issues.

Since the identification of the high-temperature solar

corona around 1940 (Grotrian 1939; Edlén 1943), stud-

ies on coronal heating have progressed in the Sun, the

nearest star. Recently, detailed fine-scale structures of

the solar corona can be seen with high-resolution obser-

vations such as HINODE (e.g., Kosugi et al. 2007; Reale

et al. 2007; Katsukawa et al. 2007; Kusano et al. 2012)

and the Solar Dynamics Observatory (SDO) (e.g., Pes-

nell et al. 2012; Takasao et al. 2012; Cheung et al. 2015).

These have revealed that the XUV emission from the

solar corona mostly comes from closed magnetic loops

with various lengths (Reale 2014). As a basic theoretical

model, Rosner et al. (1978) constructed the scaling rela-

tions between loop quantities in an isolated solar coronal

loop. When the energy equilibrium among heating, ra-

diative cooling and thermal conduction is satisfied in a

loop, they found that the maximum temperature Tmax

and heating rate EH are related to coronal pressure P

and loop length l:

Tmax = 1400(Pl)1/3, (1)

EH = 9.4× 104P 7/6l−5/6. (2)

Equations (1) and (2) have been widely used to under-

stand the relation between the thermodynamical prop-

erties and the size of solar coronal loops and utilized as

heating diagnostics in both observational and numerical

studies.

Other than the solar corona, a wide range of stellar

coronal activities has been observed through detection of

the X-ray emission to date, where the activity level de-

pends on stellar parameters such as age and mass (Piz-

zolato et al. 2003; Vidotto et al. 2014; Johnstone et al.

2021). Recently, combining a Sun-as-a-star approach

and observations of Sun-like stars, Toriumi & Airapetian

(2022) (see also Toriumi et al. 2022) proposed a unified

picture of stellar coronae. In addition, the relation be-

tween EUV and X-ray luminosities of stellar coronae is
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discovered with a simple formula that is empirically de-

rived from numerical simulations by Shoda & Takasao

(2021).

Stellar coronal heating in various late-type stars has

also been studied with theoretical approach (Cranmer

& Saar 2011; Sakaue & Shibata 2021a,b). Recently, it

is found that stellar metallicity is an important factor

that determines the coronal properties. This is pointed

out by Suzuki (2018) and Washinoue & Suzuki (2019)

who performed the magnetohydrodynamic (MHD) sim-

ulations of coronal heating in different-metallicity stars.

They demonstrated that the cooling efficiency in the

coronal atmosphere sensitively depends on metallicity

which also affects the XUV luminosities and mass loss

rate.

Although these studies extended our understanding

for stellar coronal heating, their simulations adopt the

limited treatment for heating mechanism. They con-

sider only the shock heating via nonlinear mode con-

version from transverse Alfvén waves to longitudinal

waves, while multiple heating processes are at work in

realistic stellar atmospheres. In Washinoue & Suzuki

(2019), because of the intermittency of shock heating,

the simulated coronal loops are thermally unstable and

the loop structures dynamically change with time. How-

ever, Matsumoto & Suzuki (2014), who studies detailed

heating processes by numerical simulations for the solar

corona, reported that the shock heating has a relatively

weak contribution to the total heating compared to the

turbulent heating in the upper atmosphere. Therefore,

it is needed to re-examine the metallicity dependence

in thermally-stable loops incorporating the heating from

turbulent dissipation in addition to the shock formation.

This study aims to understand the effect of stellar

metallicity on coronal heating and characterize magnetic

loops with different metallicities. We present a new the-

oretical model for stellar coronal loops in forms of ex-

tended RTV scaling laws and numerical simulations im-

proved from previous studies. In addition to the shock

heating as the previous studies consider, we phenomeno-

logically treat turbulent heating.

In Section 2, we construct the generalized scaling laws

for a hydrostatic coronal loop which take into account a

difference in metallicity. In Section 3, the setting of nu-

merical simulations is presented. In Section 4, we show

the results of our simulations to test the generalized scal-

ing laws presented in Section 2. We discuss our results

in Section 5 and summarize the paper in Section 6.

2. GENERALIZED SCALING LAWS

The RTV scaling laws (Equations (1) and (2)) are de-

rived using the radiative loss function for plasma gas
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Figure 1. Optically thin cooling functions for different
metallicities from Sutherland & Dopita (1993). The dashed
lines are the single power-law fitting over 105.7 K ≤ T ≤ 106.7

K.

with the solar abundances. Therefore, they can be only

applied to coronal loops in the Sun or stars with the

solar chemical composition. In this section, we derive

generalized scaling laws for coronal loops with different

metallicities by a semi-analytical method based on Ros-

ner et al. (1978) and Hood & Priest (1979). We start

from an energy-equilibrium equation among heating, ra-

diative cooling and thermal conduction in a hydrostatic

loop:

EH + ER −∇ · Fc = 0, (3)

where ER is the radiative loss rate and Fc is the thermal

conductive flux. ER and Fc are written as

ER = − P 2

4k2
BT

2
Λ(T ), (4)

Fc(s) = −κT 5/2 dT

ds
, (5)

where kB and Λ(T ) are the Boltzman constant and ra-

diative loss function; when deriving Equation (4), we

assumed fully ionized hydrogen plasma, following Ros-

ner et al. (1978). κ is the Spitzer conductivity. We

here approximate the cooling functions with the single

power-law in the following form;

Λ(T ) = χTα. (6)
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Integrating Equation (3) from T0 to T using Equations

(4)-(6), we obtain

F 2
c (T )− F 2

c (T0) =
κP 2

2k2
B

∫ T

T0

dT ′χT ′α+1/2 − 2κ

∫ T

T0

dT ′T ′5/2EH

(7)

T0 = 2× 104 K is set at the bottom of the transition re-

gion since we only consider the coronal part in the loop.

Then, F 2
c (T0) is negligibly small relative to the other

terms in Equation (7). We also assumed a constant pres-

sure P over the coronal part because the loop length is

generally smaller than one pressure scale height of the

coronal-temperature gas except for very long loops. In-

tegrating Equation (7) from the bottom boundary to the

loop top after replacing Fc(T ) by Equation (5) yields

l = κ

∫ Tmax

T0

dT ′T ′5/2

[
κP 2

2k2
B

∫ T ′

T0

dT ′′χT ′′α+1/2

−2κ

∫ T ′

T0

dT ′′T ′′5/2EH

]−1/2 (8)

Using above equations, we derive the formulations

of EH and Tmax. Assuming that EH is uniformly dis-

tributed in a loop, and using Fc(Tmax) = 0 in Equation

(7), we find

EH =

(
2

2α+ 3

)
7P 2

8k2
B

χTα−2
max . (9)

Substituting Equation (9) into Equation (8) yields

l =

[
χP 2

(2α+ 3)κk2
B

]−1/2

I2−αT
11−2α

4
max , (10)

and we find

Tmax =

[
χ

(2α+ 3)κk2
BI

2
2−α

] 2
11−2α

(Pl)
4

11−2α , (11)

where

I2−α ≡
∫ 1

0

dtt
7−2α

4

(
1− t2−α

)−1/2
, t ≡ T/Tmax.

(12)

The relation for EH is derived using Equations (9) and

(11);

EH =

(
2

2α+ 3

) 7
11−2α

(
χ

2κk2
BI

2
2−α

) 2α−4
11−2α 7χ

8k2
B

P
14

11−2α l
4α−8
11−2α .

(13)

We note that α 6= 11/2 is ensured from the form of Λ(T )

(Figure 1 and Table 2). Thus, given the values of α and

Table 1. Stellar parameters adopted in our simulations.
Each row presents stellar mass, stellar radius, effective tem-
perature, photospheric mass density and photospheric field
strength.

M? [M�] 0.8

R? [R�] 0.737

Teff [K] 5100

ρph [g cm−3] 4.37 ×10−7

Bph [kG] 1.96

χ, the relations for loops with different elemental abun-

dances can be derived in the forms of Tmax = a(Pl)b and

EH = cP dle. It can also be confirmed that α = −1/2

and χ = 10−18.8 for the solar metallicity reproduce the

original RTV scaling laws (Equations (1) and (2)).

3. SIMULATION SETUP

3.1. Stellar and loop models

We model a star with M? = 0.8M�, the age

of t = 5 Gyr and stellar metallicities of Z =

100.5, 100, 10−1, 10−2, 0Z�, where Z� = 0.014 is the so-

lar metallicity (Asplund et al. 2009, 2021). The basic pa-

rameters for Z = Z� are obtained from the stellar evo-

lution calculation (Yi et al. 2001, 2003) and the model

of stellar atmospheres (Kurucz 1979) (Table 1).

In this study, we consider a loop as a one-dimensional

semicircular mangnetic flux tube anchored in the pho-

tosphere, where we adopt the same configuration in

Washinoue et al. (2022). The expansion factor f(s) is

given at each position to define a loop geometry. fmax,

the value of f(s) at the loop top, determines the coro-

nal field strength Bcor by Bcor = Bph/fmax. We adopt

fmax = 200 to set Bcor = 9.8 G. We use the same stellar

and loop parameters for all the cases to easily compare

the dependence of the coronal properties on metallicity.

3.2. Equations

We solve the one-dimensional MHD equations with ra-

diative cooling, thermal conduction and phenomenolog-

ical turbulent dissipation (see Section 2.3 in Washinoue

et al. (2022)).

We calculate the volumetric cooling rate, qR, by

smoothly connecting radiation cooling in the chromo-

speric condition, qchrom, and in the coronal condition,

qcor, in the following way:

qR = ξqchrom + (1− ξ)qcor ×
(

ρ

ρbnd

)−1

tanh

(
ρ

ρbnd

)
,

(14)
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where

ξ = max

[
0,min

[
1,
Tbnd − T

Tc

]]
. (15)

In this study, we set Tc = 5000 K, ρbnd = 10−13 g cm−3

and Tbnd = 3× 104 K.

We adopt the model for the chromospheric radiation

from Carlsson & Leenaarts (2012). They developed a

simple method to calculate the radiative loss and gain in

the chromosphere using the results of the detailed radia-

tive transfer calculation for the solar chromosphere. In

this model, the radiative cooling/heating rate is repre-

sented as the sum of the contribution from each element

X;

qchrom = ΣX − LXm(T )EXm(τ)
NXm
NX

(T )AXNHne,

(16)

where LXm(T ) is the optically thin radiative loss func-

tion, EXm(τ) is the escaping probability,
NXm
NX

(T ) is the

fraction in ionization stage m, and AX is the abundance

of element X. In Carlsson & Leenaarts (2012), the func-

tions for H I, Ca II and Mg II are available. The func-

tional data for other stellar chromospheres with different

abundances have not been provided yet. In this study,

we change the metallic abundances by adjusting the val-

ues of ACa and AMg to apply Equation (16) to the dif-

ferent metallicity cases. The validity of this simplified

treatment will be discussed in Section 5.5.

In the corona, the optically thin radiative cooling rate

is simply calculated by

qcor = Λ(T )nne. (17)

We utilize the optically thin cooling function Λ(T ) for

different metallicities from Sutherland & Dopita (1993)

(Figure 1). We note that since their original functions

are based on the solar metallicity of Z� = 0.019 (Anders

& Grevesse 1989), we adjust the functions for the up-

dated value of Z� = 0.014 (Asplund et al. 2009, 2021).

3.3. Initial conditions

We set a uniform temperature distribution at T = Teff

as the initial condition. We inject velocity fluctua-

tions with the root-mean-squared amplitude of δv = 1.0

km s−1 from the bottom boundaries (photospheres at

s = 0). MHD waves (Alfvén waves and acoustic waves)

are generated by the footpoint motions. The frequency

spectrum is proportional to ω−1 where we adopt ω from

ωmin = 5.0× 10−4 Hz to ωmax = 3.3× 10−2 Hz.

4. SIMULATION RESULT

1.0

2.0

5.0

T t
op

 [M
K]

Z = Z Z = 0

5000 10000 15000 20000
Time [s]

10 16

10 15

10 14

to
p [

g/
cm

3 ]

Figure 2. Time evolution of the temperature (top) and
density (bottom) at the loop top for Z = Z� (magenta) and
Z = 0 (green).

4.1. Time-averaged profiles

Once the simulations start, the isothermal loops are

instantly heated to high temperatures to maintain the

corona with T > 106 K. Figure 2 shows the time evolu-

tions of the temperature and density at the loop top for

Z = Z� and Z = 0. The major difference from the pre-

vious study is their steady-state behavior. In Washinoue

& Suzuki (2019), who do not include the turbulent dis-

sipation, the loops repeat the cyclic evolution of the for-

mation and destruction of high-temperature corona with

time. In addition to the intermittent shock heating, the

turbulent dissipation provides continuous uniform heat-

ing and stabilize the coronal conditions, allowing us to

clearly capture the dependence on metallicity.

The time-averaged loop profiles are shown in Figure

3. We see that the coronal temperature is higher for

lower metallicity because of the inefficiency of the ra-

diative cooling. In addition, the coronal density is con-

siderably affected by metallicity. This is because the

gas with higher density can be heated up to a higher

temperature owing to the smaller cooling efficiency in

the lower-metallicity condition. Comparing the values

of the density at the loop top, ρtop (right panel of Fig-

ure 4), lower-metal coronae with Z ≤ 0.01Z� give nearly

one order magnitude larger ρtop than metal-rich coronae

with Z > Z�, which is consistent with the results in the

former works by Suzuki (2018) and Washinoue & Suzuki

(2019). The heating of the denser gas also lowers the lo-

cation of the transition region at T = 105 K.



5

0.1 1 50
s [Mm]

10 16

10 14

10 12

10 10

10 8

 [g
/c

m
3 ]

0.1150

104

105

106

107
T 

[K
]

Z = 100.5Z
Z = Z
Z = 10 1Z

Z = 10 2Z
Z = 0

Figure 3. Time-averaged profiles of the temperature and
density for different metallicities. The squares indicate the
positions at the transition region (T = 105 K).

4.2. XUV radiations

Table 2. Power-law index α and coefficient χ for the opti-
cally thin cooling function in 105.7 [K] ≤ T ≤ 106.7 [K].

Abundance Z/Z� α log10(χ)

100.5 -0.93 -16.03

100 -0.87 -16.85

photospheric 10−1 -0.71 -18.40

10−2 -0.16 -22.21

0 0.06 -23.64

coronal 100 -0.85 -16.39

0 10 2 10 1 100 101

Z/Z
10 16

10 15

10 14

10 13

to
p [

g/
cm

3 ]

1.0

2.0

5.0

T t
op

 [M
K]

Figure 4. Temperature (top) and density (bottom) at the
loop top with metallicity for lloop = 50 Mm. Filled circles are
plotted for the case simulated with the coronal abundances.

Subsequently, we estimate LEUV and LX from our re-

sults using the following equation;

L =
4πR2

?

fmax

∫
qRf(s)ds, (18)

where we assume that the stellar surface is filled with the

simulated loops with a single size. Figure 5 shows the

EUV and X-ray fluxes with different metallicities. The

blue bar in the right panel represents the solar X-ray

flux.

It can be seen that LEUV/4πR
2
? shows a weak depen-

dence on Z. For the lower metallicity, the loops have a

higher coronal density, which gives the larger emissiv-

ity. On the other hand, the spatial region that emits

the EUV radiation is reduced because most of the gas

in low-metal coronae is above the EUV temperature.
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Table 3. The coefficients and indices in the scaling relations (Equations (19) and (20)) calculated from Equations (11) and
(13).

Abundance Z/Z� a b c d e

100.5 2670 0.311 7.00×105 1.09 -0.911

100 2080 0.314 3.08×105 1.10 -0.901

photospheric 10−1 1360 0.322 7.47×104 1.13 -0.873

10−2 500 0.353 3.09×103 1.24 -0.763

0 340 0.368 8.53×102 1.29 -0.713

coronal 100 2500 0.315 5.93×105 1.10 -0.898

0 10 2 10 1 100 101

Z/Z

104

105

L X
/4

R
2  [

er
g/

cm
2 /s

] solar X-ray flux

104

105

L E
U

V
/4

R
2  [

er
g/

cm
2 /s

]

Figure 5. EUV (left) and X-ray (right) fluxes with metal-
licity for lloop = 50 Mm. The blue bar in the right panel
shows the solar X-ray flux.

These counteracting effects result in a weak dependence

of LEUV on Z.

In contrast, the dependence of LX/4πR
2
? is found to

be strong, owing to the larger spatial region with the

X-ray temperature and the higher coronal density. In

particular, the X-ray flux for Z = 0 is nearly one order

magnitude larger than that for Z = 100.5Z�. This trend

explains the previous observational feature that some

metal-poor stars emit strong X-rays despite their old

age (Fleming & Tagliaferri 1996; Ottmann et al. 1997).

5. DISCUSSION

5.1. Comparison with the scaling laws

We compare our simulation results with the general-

ized scaling relations (Equations (11) and (13)) derived

in Section 2. We adopt the single power-law fitting

to the radiative loss functions (Equation (6)) for each

metallicity over 105.7 [K] ≤ T ≤ 106.7 [K] (dashed lines

in Figure 1). In this work, we apply the narrow temper-

ature range compared to Rosner et al. (1978) where they

consider the range of 105.1 [K] ≤ T ≤ 107 [K]. The pri-

mary reason is to improve the accuracy of the power-law

fitting. In particular, a single power-law approximation

over the broad temperature range is inappropriate for

the cooling functions with Z ≤ 10−2Z� (Figure 1). Be-
sides, since the gas with the temperature around a few

105 K is thermally unstable (∂Λ/∂T < 0), we suspect

that the assumption of the steady corona is hardly sat-

isfied in the low temperature regime.

The values of α and χ obtained from our fitting are

presented in Table 2. When we write the generalized

scaling laws as

Tmax = a(Plcol)
b (19)

and

EH = cP dlcol
e, (20)

a, b, c, d and e are calculated by using α and χ from

Equations (11) and (13). Table 3 and Figure 6 show

these values for different metallicities. In particular,

a clear dependence on Z is seen in the coefficients a
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Figure 6. The coefficients and indices of the scaling relations (Equations (11) and (13)) with metallicity. The diamonds and
filled circles are the values of the RTV scaling laws and for the coronal abundances, respectively.
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Figure 7. Tmax and EH obtained from our simulations vs. those expected from the scaling laws (Equations (11) and (13)).
The filled symbols are the data from the simulation using the solar coronal abundances.
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Figure 8. Optically thin radiative loss functions for the
solar photospheric (black) and coronal (blue) abundances.
The dashed lines are the fitting lines over 105.7 [K] ≤ T ≤
106.7 [K].

and c. We can interpret that, for the fixed P and lcor,

metal-poor corona gives smaller Tmax, because the heat-

ing required to balance the smaller radiative loss is also

smaller (Equation (19)). On the other hand, when the

same energy is input as in our simulations, the coronal

pressure is considerably higher for the lower-metallicity

loop because of the suppression of the radiative cooling

(Equation (20)). Therefore, in our simulations, metal-

poor coronae show higher maximum temperatures. The

filled circles in Figure represent the values for the RTV

scaling laws (Equations (1) and (2)). The scaling laws

for the solar coronal loop is slightly modified due to the

different radiative loss function and the narrower fitted

range of the temperature.

Figure 7 compares the simulation results and the de-

rived scaling laws, where on the vertical axis Tmax (left)

and EH (right) are directly measured from the simu-

lations and on the horizontal axis they are calculated

from Equations (11) and (13) using P and lcor. It can

be seen that our simulations are in good agreement with

the scaling relations for each metallicity.

5.2. Elemental abundances in the corona

In our simulation, we adopt the optically thin cool-

ing functions for the photospheric abundances. In fact,

however, the elemental abundances in the corona are

known to be different from those in the photosphere. In

the solar corona, the elements with a low first ionization

potential < 10 eV are more abundant than in the pho-

tosphere, which is called the FIP effect (Pottasch 1963).

Figure 9. Time-averaged profiles of the temperature and
density for the photospheric (black) and coronal (blue) abun-
dances.

Similar abundance anomaly has been detected in the

stellar coronae with the low-activity level (Drake et al.

1997).

For the Sun, the radiative loss function with the coro-

nal abundances is calculated by Dere et al. (2009), where

the coronal abundances are adopted from Feldman et al.

(1992). The cooling functions with the photospheric and

coronal abundances are compared in Figure 8. The large

deviation is seen in 105.7 [K] ≤ T ≤ 107 [K] where the

low-FIP elements such as Fe and Si make large contribu-

tions to the total cooling. Therefore, it is expected that

the coronal properties are affected by which elemental

abundances are assumed.

We fit the cooling function for the solar coronal abun-

dances to the single power law as in Section 4.1 (the

blue dashed line in Figure 8). The indices and coeffi-

cients in the fitting function and the scaling relations are

presented in Tables 2, 3, and Figure 6. For the coronal
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abundances, the power-law index of the cooling function

α is almost the same as the function for the photospheric

abundances. Therefore, only the coefficients in the scal-

ing relations, a and c, are substantially changed. For the

fixed P and lcor, Tmax and EH are increased by a factor

of 1.2 and 1.9 compared to the case for the photospheric

abundances.

We additionally carried out the simulations to com-

pare the coronal atmospheres with the solar photo-

spheric and coronal abundances. Figure 9 shows the

time-averaged profiles of the temperature and the den-

sity. It is found that when the coronal abundances are

employed, the coronal temperature and density are re-

duced due to the enhancement of the metallic cooling.

This indicates that we should be careful about the el-

emental abundances in the atmosphere to specifically

reproduce stellar coronal heating by simulations.

We also note the inverse FIP (IFIP) effect. In the

corona of some magnetically active stars low-FIP ele-

ments are less abundant than in the photosphere, which

shows the depleted low-FIP elements in the corona com-

pared to the photosphere (Brinkman et al. 2001; Ro-

brade & Schmitt 2005). Recently, the IFIP effect is also

detected in solar flares (Doschek & Warren 2016; Kat-

suda et al. 2020) and slow solar winds (Brooks et al.

2022). The observations have revealed that the elemen-

tal abundances in the stellar coronae depend on their

activity; the low-FIP elements are rich in inactive stars,

and deficient in active stars (Drake 2002). These obser-

vations indicate that the abundance ratios of low-FIP

elements to high-FIP elements in the corona depend on

different regions even in a single star. Therefore, we

need to caution the variety of (I)FIP effect in studying

the coronal heating in different-metallicity stars.

5.3. Application of the scaling relations to observations

Our derived scaling laws can be used as alternative

relations to the RTV scaling laws for the solar corona

to compare with observations of stars with different

metallicities, while it is difficult to apply to loops on

other stars because they are generally observed as point

sources. However, even for the solar corona, it is known

that some loops observed in active regions often do not

satisfy the RTV scaling laws (Aschwanden et al. 2008).

This is because most of active-region loops are thermally

unstable, and do not satisfy the assumption of a static

state in deriving RTV scaling laws. Nevertheless, it is

still useful to diagnose the dynamical nature of observed

loops and estimate the heating distribution by measur-

ing deviations from the theoretical prediction. For the

solar corona, the physical relations for dynamic loops

have been derived as the extended RTV scaling laws

(Bradshaw & Emslie 2020). It will be also useful to

extend our scaling laws to those for dynamic loops to

study various atmospheric structures.

For stellar coronae, the scaling laws can also be ap-

plied to the analysis of very long loops which have some-

times detected in active stars (e.g. Peterson et al. 2010).

In addition, the derived scaling laws will also be utilized

to estimate the physical quantities that cannot be re-

solved by observations. A similar attempt has been done

for solar and stellar flares by Namekata et al. (2017);

they estimate the coronal field strength and loop length

using the observed correlation between the emission

measure and temperature of flares (Shibata & Yokoyama

2002). Using Equations (11) and (13) and the observ-

able quantities of the coronal temperature, density and

metallicity, we will be able to estimate the typical loop

length. At this moment, the number of the detection

of metal-poor coronae is still limited probably because

metal-poor stars are magnetically inactive owing to their

age. Ottmann et al. (1997) surveyed the X-ray emission

from Population II binaries to clarify the effect of metal-

licity on the coronal activities by ROSAT observations.

They reported that the average X-ray luminosities from

the metal-poor coronae are low compared to those from

the Population I binaries. They mention the possibility

that the less activity in the metal-poor coronae is asso-

ciated with the loss of the convective envelope due to

their old age. In contrast to these results, strong X-ray

emission has also been reported in a few old metal-poor

stars (Fleming & Tagliaferri 1996; Ottmann et al. 1997;

Guinan et al. 2016), which can be explained by our sim-

ulation results. Thus, to understand statistical prop-

erties of stellar coronae, further extensive studies are

required.. Large surveys with future observations will

reveal the atmospheric structures with various metal-

licities. In particular, the X-Ray imaging spectroscopy

mission (XRISM), which is expected to be launched in

2023, will provide large samples of metal-poor stars with

X-ray coronae with high-resolution spectroscopic mea-

surement.

5.4. Dependence of input energy flux on stellar

metallicity

In this study, we only change the stellar metallicity

without taking into account the dependence of the pho-

tospheric parameters on metallicity (Section 3.1). It en-

ables us to clearly understand the importance of the

cooling efficiency in coronal heating, however, the pho-

tospheric condition actually depends on metallicity. In

particular, the magnitude of velocity perturbation δv

is a critical parameter which controls the input Poynt-

ing flux from the photosphere. Although it is hard to
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uniquely determine the value of δv because of no con-

straints from observations, we possibly estimate it with

a theoretical approach.

Musielak & Ulmschneider (2002) analytically investi-

gated the effect of metallicity on the energy flux of trans-

verse waves generated from the surface convection. They

show that for the stars with Teff < 6000 K, the energy

flux decreases with decreasing metallicity. According to

their computation, the energy flux is one order magni-

tude smaller when metallicity is decreased by one order

magnitude for stars with the same Teff . From the rela-

tion of ρδv3 ≈ σT 4
eff (e.g., Bohn 1984), the value of δv for

the stars with the same mass is smaller for lower metal-

licity even when the larger Teff for lower metallicity is

taken into account. Therefore, our simulations probably

overestimate the input energy flux for lower-metallicity

stars. It needs to further investigate the dependence of

coronal heating on metallicity using different values of

δv for each metallicity.

5.5. Modeling the chromosphere with different

metallicities

While the model of the solar chromosphere has been

improving, the applications to other stellar chromo-

spheres focusing on the difference in the chemical com-

position has not been progressed. The reliable descrip-

tions for metal-rich and metal-poor chromospheres need

to perform the direct radiation MHD simulations. In

this study, we only tune the metallic abundances (AX)

to include the effect of metallicity for the calculation of

the radiative loss (Section 3.2). However, in Equation

(16), the escaping probability EXm(τ) and the ioniza-

tion fraction
NXm
NX

(T ) are also expected to depend on

metallicity.

The recipe from Carlsson & Leenaarts (2012) includes

the above functional data for H I, Ca II and Mg II. Since

ACa and AMg are assumed to be linearly dependent on

Z, the contribution of the metals to the chromospheric

radiation is substantially reduced for Z ≤ 0.1Z�. There-

fore, the uncertainty of the functions for Ca II and Mg

II under the metal-deficient environment is not a criti-

cal matter, although only that for hydrogen still remains

as a concern. For the higher metallicity with Z > Z�,

the cooling from the metallic lines is more effective. Fur-

thermore, the recipe adopted in our simulations does not

incorporate the contribution from the iron lines, which

are likely to be important in the chromospheric radiation

(Anderson & Athay 1989). Therefore, Fe II should be

also added to calculate the radiative loss, particularly

for high-metallicity cases. The validity of the present

treatment to include the different metallicity needs to

be examined with radiation transfer calculations.
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Figure 10. Snapshots of the temperature structures (top)
and the radiative cooling rate per mass (bottom) in the chro-
mosphere for the different models.

Another missing physics in our chromospheric model-

ing is the magnetic diffusion caused by the ion-neutral

interactions. Some numerical studies for the solar

chromosphere demonstrate that the ambipolar diffusion

plays an important role in the local heating in the

chromosphere (Khomenko & Collados 2012; Mart́ınez-

Sykora et al. 2017; Nóbrega-Siverio et al. 2020), al-

though the time-averaged heating rate by the ambipolar

diffusion is found to be much smaller than shock heating

rate from the nonlinear mode conversion of the Alfvén

waves (Arber et al. 2016). Because of the lower ion den-

sity, the ambipolar diffusion is expected to be more ef-

fective in metal-poor chromospheres, which may affects

the chromospheric structure and the coronal heating. To

clarify how the metallicity changes the chromospheric

profiles, it is needed to incorporate the ambipolar diffu-

sion term into the basic equations in our future work.

6. SUMMARY

To construct the model of coronal loops with various

metallicities, we generalized the scaling relations for a

hydrostatic coronal loop from the energy balance among

heating, radiative cooling and thermal conduction, as an

extension of the RTV scaling laws for the Sun. These

allow us to characterize the coronal-loop structure with

a variety of abundances once the optically thin radiative

loss function for the plasma gas is obtained.

The effect of the metallicity on coronal heating is in-

vestigated by the MHD simulations with radiative loss

functions for different metallicities. It is revealed that

the coronal temperature and density are higher for lower
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Figure 11. Time evolution of the height at T = 104 K for
AA89 (top and black), GJ12 (middle and blue) and CL12
(bottom and magenta) models.The three dashed lines in each
panel represent the time-average heights of these three mod-
els.

metallicity because the radiative cooling is suppressed.

Accordingly, our estimates for the XUV luminosities

give the larger values for lower-metallicity coronae. No-

tably, the X-ray luminosity shows a steep dependence

on metallicity. These results on the coronal radiation

would have a large impact on the evolution of proto-

planetary disks and planetary atmospheres through gas

evaporation.

Moreover, we discussed the (I)FIP effect in coronal

plasmas. A number of observations have reported that

the elemental abundances in the corona are different

from those in the photosphere, which depends on the

stellar activity. We simulated the coronal heating with

the radiative loss functions for the solar photospheric

and coronal abundances. When we employ the coro-

nal abundances, the increased coolants of low-FIP ele-

ments enhance the radiative cooling, which yields the

cooler coronal atmosphere. This indicates that con-

versely when the low-FIP elements are depleted as ob-

served in magnetically active stars, the coronal temper-
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Figure 12. Time-averaged profiles of the temperature and
density for different chromospheric models.

ature and density are expected to increase by a factor of

a few. Therefore, we suggest that a variety of elemen-

tal abundances should be taken into account for stellar

coronal modelings.

Although the metallicity is found to play an essential

role in controlling the coronal properties, there still re-

mains challenges on modeling the stellar chromosphere

with different metallicities. Because we adopted the

models based on those for the solar chromospheric con-

ditions in calculating the radiative loss, the detailed pro-

cesses of radiative transfer need to be investigated under

different-metallicity conditions. In addition, magnetic

diffusion in partially ionized gas is an important process

for the chromospheric heating. To develop full pictures

of the stellar atmosphere, further studies will be needed

to assess these physical processes and the dependence of

their effects on metallicity.
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APPENDIX

A. RADIATIVE LOSS IN THE SOLAR CHROMOSPHERE

One should be careful to model the radiative loss in the chromosphere, because the physical condition of the chromo-

sphere is directly connected to the Alfvén-wave propagation and the coronal heating (Washinoue et al. 2022). Therefore,

it is worthwhile to examine how the atmospheric profiles are affected by different models for the chromosphere. Our

simulations in this paper use the prescription by Carlsson & Leenaarts (2012) and extend it to different metallic

abundances. In this subsection, we compare the atmospheres with the following three models for the chromospheric

radiative loss.

(I) AA89 model

Anderson & Athay (1989) introduced a chromospheric model with non-LTE effects to reproduce the temperature

structure of the VAL C atmosphere (Vernazza et al. 1981). They found that the volumetric cooling rate is almost

proportional to the mass density in the temperature plateau with T . 104 K which accounts for most of the VAL

chromosphere:

qchrom = 4.5× 109ρ. (A1)

Owing to the simple form, Equation (A1) has been widely used in numerical simulations that treat from the photosphere

and the chromosphere to the corona (Moriyasu et al. 2004; Suzuki & Inutsuka 2005; Matsumoto & Shibata 2010; Suzuki

2018; Washinoue & Suzuki 2019). However, it should be noted that it is required to set a cutoff temperature of radiative

cooling to avoid the extremely low chromospheric temperatures (Washinoue et al. 2022).

(II) GJ12 model

More precise modeling for the chromospheric radiative loss is developed by Goodman & Judge (2012). They use the

optically thin approximation, following that the metallic lines of Fe II, Ca II and Mg II dominate over the chromospheric

radiation. The radiative cooling rate is fitted to a three-level generic hydrogen atom with two excited states using the

CHIANTI atomic database and the OPACITY project;

qchrom = 8.63× 10−6CE
ne(nH + np)

T 1/2

2∑
i=1

EiΓiexp

(
−eEi
kBT

)
, (A2)

where CE = 1.6022 × 10−12 erg eV−1, the energies of a hydrogen atom with the excited state E1 = 3.54 eV and

E2 = 8.28 eV. Γ1 = 0.15 × 10−3 and Γ2 = 0.065. Equation (A2) is confirmed to be valid in T < 1.5 × 104 K. ne is

calculated by the analytic expression derived for non-LTE hydrogen plasma in the solar photosphere and chromosphere:

ne = n
1/2
H

(
3.2× 104

α

)1/2(
T

104

)0.393

exp(−T2/2T ), (A3)

where α = 3.373× 10−13 and T2 ∼ 1.18187× 105 K.

(III) CL12 model

The model by Carlsson & Leenaarts (2012) is adopted in our simulations. The cooling/heating rate is described as

qchrom =
∑
X

−LXm(T )EXm(τ)
NXm
NX

(T )AXNHne, (A4)
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where each factor is already explained in Section 3.2. This recipe allows us to compute the radiative loss and gain

in the solar chromosphere with a low numerical cost, which well reproduces those obtained from the direct radiative

transfer calculations. This treatment can be used in the range of T ≤ 3× 104 K.

Figure 10 compares snapshots of the temperature and the radiative cooling rate per mass for the three models, where

we pick out a region that corresponds to the temperature plateau above the temperature-minimum region. The AA89

model shows the constant cooling rate per mass above the cutoff temperature Toff = 5000 K. On the other hand, for

the GJ12 and CL12 models, qchrom takes different values at different locations since it is calculated by the local density

and temperature. The time evolution of the height at T = 104 K is shown in Figure 11. In all the cases, this height

dynamically moves up and down with time. The dashed lines represent the time-averaged heights. The difference

among the three cases is less than 0.5 Mm.

The time-averaged structures of the temperature and density are compared in Figure 12. There are some differences

below the coronal base (T = 5× 105 K), while the coronal temperature and density are almost the same. The AA89

and GJ12 models show a gradual increase in the chromospheric temperature. On the other hand, since the significant

local cooling frequently occurs in the CL12 models (Figure 10), the thinner chromospheres are formed due to the low

Tmin.
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